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ABSTRACT

Rigorous comparison of the reliability coefficients of several

tests or measurement procedures requires a sampling theory for the

coefficients. This paper summarizes the important aspects of the

sampling theory for Cronbach's (1951) coefficient alpha -- a widely

used internal consistency coefficient. This theory enables researchers

to test a specific numerical hypothesis about the population alpha and

to obtain confidence intervals for the population coefficient. It also

permits researchers to test the hypothesis of equality among several

coefficients, either under the condition of independent samples or when

the same sample has been used for all measurements. The procedures are

illustrated numerically, and the assumption and derivations underlying

the theory are discussed.
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Introduction

When an estimate of the reliability of an educational or psychologi-

cal instrument is needed and the parallel forms and test-retest approaches

are impractical, investigators typically rely on internal consistency

coefficients. For cognitive tests and affective scales one of the most

commonly used indices is Cronbach's (1951) coefficient alpha. This co-

efficient is also frequently employed in settings which involve raters

or observers (Ebel, 1951). The purpose of this review is to summarize

the sampling theory for coefficient alpha and to illustrate the uses

of this theory in evaluating reliability data.

The experimental problems for which the sampling theory is needed

include the following: 1) to test the hypothesis that coefficient alpha

equals a specified value in a given population; 2) to establish a confi-

dence interval for the alpha coefficient; 3) to test the hypothesis of

equality for two or more coefficients when the estimates are based on

independent samples; (4) to test the hypothesis of equality when the

observed coefficients are based on the same sample and hence are de-

pendent; and 5) to obtain an unbiased estimate of the population value

of alpha.

A test of a specific hypothesis is called for when a revised measure-

ment procedure is compared to an established, accepted procedure. In most

such instances this statistical test would involve a directional alter-

native--that the new procedure is more reliable than the traditional pro-

cedure. In some applications the test might be two-ended, however. Such

an alternative might arise when changes in a measurement procedure make
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administration more efficient, but might affect reliability either posi-

tively or negatively.

Studies in which differences among coefficients are of concern to

investigators are not uncommon. Research on alternative methods of measur-

ing a specified trait may well call for a test of the equality of alpha

coefficients for the several methods. Evaluation of a training program

designed to enhance inter-rater reliability may also demand a test of this

null hypothesis. Refinement of a instrument may be assessed, in part, by

a comparing the reliabilities of severa' alternative versions. Oaster

(1984), for example, encountered this situation in the refinement of

Likert scales.

These F:oblems of inference require the development of a sampling

error theory for coefficient alpha. The first steps in this development

occurred in the early 1960s when Kristof (1963) and Feldt (1965) indepen-

dently derived a transformation of the sample alpha coeffici6At which is

proven to be distributed as F. They showed how this result can be used to

test hypotheses and generate confidence intervals for a single alpha co-

efficient.

Techniques for testing the equality of alpha coefficients were devel-

oped over the following twenty-year period. The first situation to be

considered was that of independent coefficients, that is, coefficients ob-

tained from separate examinee samples. Feldt (1969) derived an F test for

the two-coefficient case, and seven years later Hakstian and Whalen (1976)

extended the methodology to any number of coefficients. Dependent or re-

lated coefficients--reliabilities based on the same sample--posed more
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complex statistical problems. Feldt (1980) resolved these problems for

two coefficients; Woodruff and Feldt (in press) completed the cycle with

a test of equality of m dependent coefficients. In each instance, the

control of type I error was verified through computer-based Monte Carlo

studies.

The present paper synthesizes this statistical thecry for Cronbach's

alpha. The principal objective is to make the procedures accessible to

researchers and to provide numerical illustrations. For each situation

the general outlines of the proofs and derivations are presented.

Inference for a Single

Alpha Coefficient

Let X. denote the score of person 2 on item j. The test consists
JP _

of n items or parts and is administered to N subjects. Let Y
P
denote the

total test score for person p, i.e., Y
P j
= Zn

=1 j
X . The usual formula for

1)

the sample alpha coefficient, which u'll be denoted as C herein, is

-2 n -2

n of
2j=laX,

n 1 ;2
(1)

In this formula u2
X tepresents the unbiased estimate of the variance for
J

item j, and ;,21 that for score Y. The sample alpha coefficient is denoted

by C and its parameter value by C to avoid confusion with the syn.bolic

representation of statistical significance levels, almost universally

denoted in the statistical literature by a.

Following Hoyt (1941), an alternate formula for may be derived by

considering the responses of ne N subjects on the n items as observations
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in a two-way subjects-by-items ANOVA with one observation per cell. Within

this framework, a formula for C is

MS(S) - MS(SI)
- 1

ME(SI)C =
MS(S) MS(S)

(2)

where MS(S) denotes the meat square for subjects and MS(SI) denotes the

mean square for subjects-by-items interaction. When applied to the setting

in which n raters evaluate N subjects, C can be used as measure of inter-

rater agreement, with differences among rater means not considered measure-

ment error. In such a case, raters substitute for item.: in equation (2).

Let E denote expected value and in particular let the expected values

for MS(S) and MS(SI) be denoted as E[MS(S)] and E[MS(SI)], respectively.

The population value of coefficient alpha is defined as

EaMS(S)] E[MS(SI)] E[MS(SI)]
E[ms(s)] Vms(s)]

(3)

Kristof (1963) and Feldt (1965) independently proved that when he usual

assumptions for the two-way random effects (type II) ANOVA are met, the

following statistic is distributed as F with N - 1 and (n-1)(N-1) degrees

of freedom:

1 C MS(S)/E[MS(S)] (4)

1 C MS(SI)/ENS(SI)J

It may also be shown that if 1) items are treated as a fixed factor in

the two-way ANOVA, 2) the usual assumptions ior the two-way mixed mod'a

(type III) ANOVA ate met, and 3) there is no items-by-subjects interaction,

the same F distribution holds for the statistic given in equation (4)

(Scheffe, 1959, cha' 1).
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The proof that (1-C)/(1-4) is an F variable folios from the fact

that under the assumed ANOVA model MS(S) /ENS(S)] is distributed as a

chi square variable divided by its degrees of freedom, N-1. Likewise,

MS(SMENS(SI)] is distributed as a chi square variable divided by its

degrees of freedom, (n-1)(N-1). Under the assumed model these chi squares

are independent. Therefore, their ratio (equation 4) is distributed as a

central F with N-1 and (n-1)IN-1) degrees of freedom.

This distribution theory for (1-C)/(1-4) may be used to formulate a

test of a specific numerical hypothesis and derive a confidence interval

for a populatioh alpha coefficient. To test the null hypothesis Ho: C = Co

against a two-tailed alternative at the a level of significance, let F(a/2)

denote the 100a/2 percentile and F(1-a/2) the 100(1-a/2) percentile of the

central F with N 1 and (n-1)(N-1) as its df. The null hypothesis is

rejected if

4 < 1
(1-C) (1-00)

Z
F(a/2) or

> 1
F(1-a/2)

(5)

If a one-tailed test at the a level of significance is desired, a/2 is

replaced by a in the appropriate critical value.

The upper and lower endpoints of a 100(1-a) percent interval for

for C are given respectively by

C
U

= 1 f(1-Z)F(a/2)1 and C
L

= 1 - ((1-Z)F(1-a/2). (6)

If a one-sided 100(1-a) percent interval is desired, a/2 is replaced by

by a -n the appropriate endpoint.

The foregoing results may be illustrated by the following example.

Suppose a researcher used 41 examinees to obtain an estimate of .790 for

8
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the alpha coefficient of a 26-item test. The relevant F distribution

has df = 40 and 1000, for which the fifth and ninety-fifth percentiles

are 0.66 and 1.41. The 90% confidence interval (bounded below and above)

has

C
L

= 1 (1- .19)(1.41) = .704

C
U

= 1 (1-.79)(0.66) = .861

A one-tailed test of Ho: C
o
= .70, with H

alt
: :",

o
> .ik, :TA a = .05, would

require only a lower bound for the critical region. By equation (5), the

critical region (C.R.) is

C.R. > 1 - LII:721/ = _ 1 (1-.70)
F(.95) 1.41

- .787

Since the. observed coefficient alpha of .790 exceeds the lower bound of

the critical region, Co = .70 may be rejected.

- - -

The expected value of c, E[C], and the bias in C can be deduced from

the fact that (1-Z)/(1-C) is also distributed as F, but with (n-1)(N-1)

and (N-1) degrees of freedom. Since the expected value of a central F is

v
''

/(v
2
-2), where v

2
is the second df value,

and hence

If follows that

E[(1-C)/(1-C)] = (N-1)/(N-3),

E[Z] = 1 (1-C)(N 1)/(N 3).

E[4] C = 2((-1)/(N-3).

Since C < 1 the difference must be negative, and hence F, tends to under-

estimate C. This result was first presented by Kristof (1963).

9
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0.4

The negative bias of C is generally of little consequence unless

N is small. If N = 50 and C = .70, for example, the expected value of

C is .687. With N = 100, the expected value is .694. Where an unbiased

estimate of C is required, it may be obtained by the formula

= [(N-3)Z/(N-1)] + 2/(N-1).

Comparison of Alpha Coefficients Obtained

from Independent Samples

Rigorous comparisons of alternative test scoring procedures, test

construction techniques, item formats, item selection strategies, modes of

test administration, or competing test instruments entail, in part, the

comparison of reliabilities. The first paper to address this problem was

published by Feldt (1969), who derived a statistical test of the hypothesis

Ho: Cl = TheThe Feldt approach is based on the test statistic W = (1-00/

(1-Z1). He proved that when the reliability parameters are equal, W is

distributed as the product of two inuependent central F variables. This

product, it was shown, could be well approximated by a single F with N1-1

and N,.)-1 degrees of freedom. With mudern computing equipment it is relative-

ly simple to determine the probability that a central F will exceed the

obtained value of W. If the probability is less than the significance

level, the hypothesis of equality can be rejected.

Hakstian and Whalen (1976) extended the methodology to the case of m

coefficients. Their test is based on the normalizing transformation of F

developed by Paulson (1942) and the fact that (1-0/(1-C) is distributed

as F with (N-1)(n-l) and (N-1) degrees of freedom. Paulson proved that

' 10
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where z is distributed as unit normal deviate. In the present context,

the transformation may be stated as follows:

z -
(1-01/3 [(1 2-)1-01/3 /(1

9v
2

2
'
"9v `

I
(7)

18v
2
(1-02/3

jr--
"2 +

18v2(1-02/3

v1(9v2 2)2

This ratio implies that (1-.01/3 is approximately normally distributed with

non-zero mean (the term in brackets 4.n equation 7) and variance approximated

by
-,

S- =
18v2(1-02/3

1 +
v

-,

(9v
2
-2)2 v

1

[18(N -(1X1-1) n22/3 1 [ rid.

Hakstian and Whalen (1976) propose that the weighted average (0) of the

(I-21)1/3 be obtained, the weights equalling the reciprocals of the vari-

ances. The test statistic is then n defined as

- 1/3 , -m (1 - i) u" 2

M = E
Si L i

(8)

which is interpreted as a chi square with m-1 degrees of freedom. The justi-

fication for this interpretation is that the sum of m squared standardized

deviations of normal variables from their weighted mean is so distributed.

The test is thus analogous to the test of the equality of m correlation

coefficients, wherein Fisher's transformation of the coefficients has achieved

normality with variances ir(Ni-3). (See Hays, 1981, p. 469.)
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There are two minor problems with the Hakstian/Whalen test. First, the

variance of (1-Zi )
1/3

is an estimate based on the sample value of C..

This is contrary to theory and in contrast to the case of transformed

correlations, in which the variances, 1/(Ni-3), do not depend upon sample

^estimates. Second, even if all C, are equal, the statistics (1-C.) 1/3 do
i

not come from the same normal distribution unless the bracketed term in

equation (7) is the same for all tests. This equality demands that

(1 2/9v1)/(1-2/9v2)

be constant over all tests.

Fortunately, these problems appear to be of little consequence.

...

Theuseofthesamplestatistic,Ci ,to replace the parameter, Ci, in

the second term under the radical in the denominator of equation (7) seems

to have little effect on the distribution of the ratio. The net effect

might be likened to that of interpreting a t-statistic as a normally dis-

tributed variable--an interpretation that involves no serious error when

the sample size is larger than 50. (See Marascuilo, 1966) The minimal

effect of replacing C by C in the second term probably results from the

fact that this term is of rder 2/(9)(N-1)(n-1). The first term, which

properly includes Z, is of order 2/(9)(N-1).

The second problem also proves to be of negligible importance by

virtue of the fact that 1-(2/9v
1
) and 1-(2/9v

2
) are both very close to

one, regardless '' the variation in n
i
and N

i
from test to test. For

example, if nl = 50 and N1 = 100 the ratio of these terms is 1.0022.

If n2 = 10 and N..) = 50, the ratio is 1.0040. Thus, the hypothesis that
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1.0022(1-c
1

)
1/3

equols 1.0040(1-c
2

)
1/3

is essentially a hypothesis that

Li er

.,00drx.ff and Feldt (in press) followed a different line of reasoning

to arrive at a similar test of the null hypothesis for m coefficients.

They adopt the transformation 1/(1-c) 1/3 rather than (1- x)1/3. A critical

point in the subsequent derviation is the identification of a chi-square

distribution (df to be determined) for which the variable x
2
/df has nearly

the same mean, variance, skewness, and kurtosis as (1-0/(1-0. The latter

variable is distributed as F with N-1 and (N-1)(n-1) degrees of freedom.

The chi-square distribution which best satisfies this requirement takes

df..N.-1,whereN.=(n.-1)(N )/(n
i
+1). Woodruff and Feldt approximate

1

the variance of 1/(1-0
1/

by the Wilson/Hilferty (1931) normalizing trans-

formation of a chi-square variable. This leads to the following estimate

of the variance of 1./(1-c.)
1/3

1

S.2 = 2 /9(N.- 1)(1- c )
2/3

Unlike Hakstian and Whalen (1976), Woodruff and Feldt use the arithmetic

mean of the transformed coefficients:

m
= E (1-i)-1/3/m

Their test statistic, under the assumption of independent samples, is

1

2 / S2
(9)uJ

where S2 is the arithmetic mea,1 of the several va lances Si. Then,

under H
o

UX
1
is approximately distributed as x

2
with m-1 degrees of

freedom.

13



These two approaches may be illustrated by the following data

roup 1 and Test 1 :

Group 2 and Test 2 :

roup 3 and Test 3 :

G 41 = .784 ; n1 = 5, N1 = 51 ;

4-) = .875 ; n2 = 5, N,7 = 101 ;

G 43 = .936 ; n3 = 5, N3 = 151 ;

The Hakstian and Whalen variances equal .0020179, .00069754, and .00029718.

The weighted average, u*, equals .4458. The test statistic, interpreted

as a Y2 with df = 2, equals 23.053.

The same data, analyzed via the Woodruff and Feldt approach, yields

variances of .0187056, .0134003, and .0139353, and p = 2.05556. The

test statistic, also interpreted as a chi-square with df = 2, equals

22.926. One might expect on the basis of the underlying derviations that

the Woodruff/Feldt test would give results that are quite consistent with

those of the Hakstian/Whalen test, as they were in this instance.

If tests of pairwise contrasts amorg the coefficients are warranted

on the basis of a significant outcome of the omn us test, the pairs can

be considered by Feldt's (1969) test for two coefficients. In the present

instance all pairs lead to rejection of the null hypothesis.

11

(1-C1)

,

(1-C2)

(1-C3)

1/3

1/3

1/3

=

=

=

.6

5

.4

Comparison of Alpha Coefficients Obtained

from the Same Sample

In some settings it is possible to administer all instruments or

apply all procedures to the same sample of N examinees. In such instances

the coefficients are statistically dependent, and the test of the null

hypothesis must recognize this dependence. To ignore it is tantamount in

most applications to adoption of a significance level far more stringent

than the nominal level.
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The methodology for the case of dependent statistics, like that for

independent statistics, was first developed for H
o

r
1

: = Feldt
'

(1980) derived three procedures for testing this hypothesis. Simulation

studies indicated that all three procedures control type I error rates

satisfactorily. Feldt recommended the following test statistic:

t
(Zl Z2)

N-2

[4(1-1)(1-Z2)(1-;2)
df = N-2 (10)

The squared correlation in tl,e denominator refers tr' the squared co-

efficient between the two total-test scores for the sample.

The derivation of this test rests on the fact that if Cl = C2 , then

(1-42)/(1-1) is distributed identically as the ratio of two dependent

sample variances, each with expected value of 1.0. Pitman (1939) proved

that the following function of such a ra 3 is distributed as t with

df = N-2:

I,

t = [62/;2)-d 1N-2 / (4c
2
/

1
)(.-P2)]1/2

2 1

Thus, the same function of (1-C;2)/(1-C1) must be distributed as t with df

of N 2. Substitution of (1-2)/(1-Z1) for CJ/C7 in this expression

untimately leads, after algebraic simplification, to equation 10.

Woodruff and Feldt (in press) extended the methodology to the case of

m dependent coefficients. They considered eleven possible test statistics.

Extensive Monte Carlo simulation led to three procedures that showed

excellent control of cype I error and superior power, compared to the

others. Of these three technqiues, the procedure identified as UX
1

was

the simplest computationally and is summarized here.

15
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As ia the case of independent coefficients, Woodruff and Feldt (in

press)appcoxixate the variance of 1/(1-c.)
1/3

by the quantity

Si = 2/9(Ri-1)(1-i)2/3 . (11)

However, the test for dependent alphas also demands an approximation

ofthecovariancebetvieen1/(1-Cd1/3 and1/(1-ci1/3 . Using the delta

method of Stuart and Kendall (1977), Woodruff and Feldt derived the

following estimate:

sij = 2;1J ./9(ii 1)(1)1/3 C
,1/3

.) (12)

As in the case of two coefficients, P2. is the square of the sample cor-n
relation between the scores on tests i and j. When the tests differ in

length, then N = N(n-1)/(41), where n is the harmonic mean of all test

lengthsOritheassurilptionthatalevariables1/0-CJ1/3 have a multi-
i

matrix function of ai , a.., and
ij

N is shown to be distributed approximately as x2 with m-1 degrees of

freedom. Woodruff and Feldt (in press) further show that an approximation

of this function serves satisfactorily as a test statistic. It is

UX
1
= E [(1-C )-1/3 OF / (§2-e) ,

.
1

(13)

where S2 is the average of the variances S2 (equation 11), C is the aver-

age of the covariances S..
ij

(equation 12), and 4* is the average of the

transformed coefficients, 1/(1-C
i

)
1/3

. UX
1

is distributed approximately

as chi-square with m-1 degrees of freedom when H
o

is true.

This procedure may be illustrated by a four-test situation with

N = 100 and the following data:



Test 1 n
1
= 100

Test 2 : n2 = 75

Test 3 : n
3
= 50

Test 4 : n
4

= 25

4
1

42

3

4

= .875 (1- 41) -1/3 =

= .857 (1-2)-1/3 =

= .833 (1-4
3
)-1/3 =

= .800 (1-4
4
)-1/3 =

Correlations:

1.00 .80

1.00

2.0000

1.9123

1.8159

; = 48.0000

= 95.9184

u
*
= 1.85955

1.7100

.75 .65

.70 .60

1.00 .55

1.30

14

.0093648 .0057306 .0047828 .0033829

S? and S..:
1 13

.0085615 .0039836 .0027561

.0077201 .0021991

.0068459

§2 = .0081231 = .0038059 SZ C = .0043172

UX
1

= 10.836 P (x(3) > 10.836] = .013

For this example, the more complex function for which UX
1
substitutes

has the numerical value 11.118.

Analogous to the situation involving independent coefficients,

follow-up tests of pairwise contrasts can be made via the t-test pre-

sented earlier for two coefficients.

Cruciality of the Statistical Assumptions

The most fundamental distributional assumption required by these

inferential procedures is that the quantity (1-0/(1-4) be distributed
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as F. As previously noted, this assumption will be met if the scores

conform to the dictates of the two-way random effects model (type II

ANOVA) with one observation per cell or the two-way mixed model (type

III ANOVA) with one observation per cell and no interaction effect.

These requirements will be met if the item or part scores are normally

distributed with homogeneous error variances. However, these assumptions

will almost surely be violated if each part of the instrument gives rise

to a restricted range of scores. Therefore, the question arises how

well the procedures may be expected to perform with actual data.

Feldt (1965), in deriving the F distribution for the transformed

alpha coefficient, gives a detailed discussion of the assumptions required

under the random effects model and how the; might be violated with dichot-

mously scored items. He also reports on the results of a simulation study

based on real test data with dichotomously scored items. The results

indicate that the F distribution holds up well with such data.

In an experimental design context, Seeger and Gabrielsson (1968)

simulate the distribution of mean square ratios under the mixed model

ANOVA when applied to dichotomous data. They consider the situation in-

volving several observations per cell and focus attention on the F ratio

pertaining to treatment effects. Though this ratio is not the one used

in reliability studies, their simulations offer further indirect evidence

that (1-0/(1-0 is distributed approximately as F even if the items are

dichotomously scored.

Inference for several alpha coefficients based on independent samples

requires, in addition to distributional assumptions, that the sample sizes

18
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be large enough to justify the asymptotic chi square distribution for

the Hakstian/Whalen test statistic M and the Woodruff/Feldt statistic

UX2. Hakstian and Whalen used Monte Carlo methods to investigate the

sampling distribution of test statistic M when computed from dichoto-

mous part scores. Their results indicate good control of type I error

rates with as few as twenty subjects per test, even for this gross

departure from normality and homogeneity of variance.

If the same sample or matched samples are used for testing the

equality of several alpha coefficients, two additional assumptions are

required.Thefirstisthatthel/(1-C.)1/3 have a joit_ multivariate

normal distribution. The second is that the correlations between total

scores Y. and Y. be identical (homogeneous) for all pairs of tests. If

the (1-Ci)/(1:4i) have approximate F distributions, then the 1/(1-41/3d
have marginal distributions approximately normal in form. Given these

marginal normal distributions, it is reasonable to assume multivariate

normality. However, multivariate normality does not automatically follow

from the condition of marginal normality.

Woodruff and Feldt (in press) investigated the power and Type I error

control of UX
1
using Monte Carlo methods. They found for 3 sample size

as small as 50 and with moderately heterogeneous, positive inter-test

correlations (range of p equal to .30), control of Type I error rates was

quite good. However, these simulations were based on continuous, normally

distributed scores. They did not provide evidence as to the cruciality of

the normality assumption for total scores nor did they document the effects

of dichotomous item scoring.
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The results of subsequent Monte Carlo investigations of these issues

are summarized in the tables which follow. In the first of these studies,

dichotomous item scores were generated via a computer simulation technique

described by Nitko (1968). Two true null hypotheses were considered. In

the first, ti = .80 for each of four tests with 30 items in each test.

In the second, Ci = .65 for each of three tests with 30, 30, and 60 items,

respectively. Each 30-item test exhibited a range of item difficulties

from .30 to .80; the 60-item test had a range of item difficulties of .35

to .73. The item difficulty distribution for each test was unimodal and

symmetrical around the value .55. The resultant distributions of total

test scores were slightly skewed negatively (yi = -.13) and platykurtic

(Y
2
= -.53), generally similar to the distributions for many standardized

tests. The inter-test correlations were homogeneous and equal to their

shared reliability (.65 or .80).

For each null hypothesis, 2200 simulations of random sample data were

produced, based on N = 50 and N = 100. Test UX1 was performed on each

replication, and the percent of test statistics exceeding the upper 10%,

5%, and 1% points of X(m-1) was tabulated. These data are summarized in

Table 1.

It may be observed that the UX1 test showed no gross effects from

dichotomous item scoring. There is a tendency toward liberality if N=50

and a 10 or 5 percent level is employed, but this deviation from the

nominal significance level would not disturb most researchers.

The second empirical study used actual test data--scores of Iowa

students in grade 9 and 11 on various subtests of the Iowa Tests of

20
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Table 1

Estimated Probability of Type I Error Based
on 2200 Replications of the Lai Test:
Simulated Dichotomous Item Scores

C = .8 m =4n.=30 C = .65 m = 3 n. = 60,30,30

10% 5% 1% 10% 5% 1%

N=50 10.7 5.4 1.4 10.0 5.1 0.9

N=100 10.9 5.6 1.1 9.8 5.0 1.1
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Educational Development, Form X-7. The subtests for grade 9 were selec-

tively shortened by the deletion of items so that all tests had C = .75.

The subtests for grade 11 were differentially shortened so that all tests

had C = .87. From the pool of 16,443 records for grade 9 and 16,760

records for grade 11, 2,000 random samples of N=50 and 2,000 samples

of N=100 were chosen by sampling examinees randomly with replacement.

The UX
1

test was then executed on each examinee sample, using m=2, 3, 4,

or 5 ITED subtests. Within the value of m=3 znd 4, two groups of sub-

tests were investigated. The first group exhibited less heterogeneity

of inter-test correlations than did the second, but in both cases the null

hypothesis with respect of C was true. The results of this study are

summarized in Tables 2 and 3.

With actual test data the control of Type I error was not as tight

as with simulated dichotomous item scores. The deviations from the nominal

significance level were most pronounced with N=50, though not consistently

in the direction of liberality. With m=3, for example, the deviations at

10% and 5% levels are positive for one group of tests and negative for the

other. It must be borne in mind. of courEe, that the standard error of

a percent in the vicinity of 10% equals about 0.67% with 2000 trials; near

5% the standard error equals about 0.49%.

A crude summary over the twelve situations for N=50 and N=100 gives

rise to t e following averages:

N=50 10.6% 5.5% 1.3%

N=100 9.9% 5.0% 1.1%
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Table 2

Estimated Probability of type I Error Based
on 2000 Replications of the UX1 Tsst:

Actual Dichotomous Item Scores (C = .75)

Sample
Size

m=2 ni=11,13 and ni=11,16

10% 5% 1%

m=5

10%

ni=11,13,16,21,21

5% 1%

N=50 10.4 5.6 1.2 11.9 6.0 1.1

N=100 9.8 4.7 0.9 10.3 3.2 0.8

m=4 in.=11,16,21,21
1

.60<p <.67
xy

m=4 n.=11,13,16,21 .55<p <.65
1 xy

N=50 11.4 6.4 1.5 9.5 5.3 0.8

N=100 10.5 5.1 0.9 9.0 4.5 0.8

m=3 n i =11 10 16 10 21 .611<c)
xy

<.65 m=3 n.=11,13,16 .55<p
xy

<.65
1

N-5G 9.9 4.9 1.3 10.4 5.6 0.9

N=100 9.1 4.0 0.6 10.4 4.1 1.1
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Table 3

Estimated Probability of Type I Error Based
on 2000 Replications of the UX1 Tests:

Actual Dichotomous Item Scores = ,87)

Sample
Size

m=2 n
i
=24,34 and n

i
=28

'

46

10% 5% 1%

m=5 n
i
=24,28,31,36,46

10% 5% 1%

N=50 10.4 5.5 1.4 10.2 5.2 1.4

N=100 9.7 5.0 1.2 9.7 5.5 1.7

m=4n.=24,36,46,28.70<p.79m=411.=31,24,46,28
1 xy 1

.63<p <.79
xy

N=50 12.4 6.9 1.7 10.3 4.7 1.2

N=100 10.8 5.8 1.5 9.8 5.5 1.4

m=3 n.1 =11,16,34 .60<pxy .65m=3n.=31,24,46
1

.63<p
xy

<.76

N=50 11.8 6.0 1.6 8.6 4.4 1.2

N=100 11.0 5.9 1.1 8.8 4.3 0.9
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These means are very close to the averages for simulated data (Table 1).

Together, they support the conclusion that the UX1 test works quite well

with N=100, but it errs on the side of liberality with N=50. The degree

of liberality isn't great, and most researchers would probably be willing

to accept a test that controls Type I error within one-half of one percent.

But there is a need for an improved test for use with sample sizes of 50

or less. It is pertinent to note that almost all of the test instruments

used in this study gave rise to negatively skewed, platykurtic score

distributions. The Y
1
index of skewness ranged between -.597 and +.165,

with eight of the ten indices negative. The Y2 index of kurtosis ranged

between -.015 and -.948. The average value of Y2 for all ten tests (five

in each of two grades) was -.676. Quite possibly this characteristic of

the score distributions accounts for the liberality of the UX1 test with

the smaller sample size.
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